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ESTIMATION IN NONCENTRAL DISTRIBUTIONS

Alan E. Gelfand

University of Connecticut, Storrs

1. INTRODUCTION

This paper investigates alternatives to minimum
variance unbiased (MVU) estimators in noncentral (NC)
x? and F distributions. Motivation is provided by
noting that if Z ~ x2(p;A), then i) (Z-p)/2, the MVU
for g(A) = X is inadmissible under squared error loss
(SEL), see, e.g., Perlman and Rasmussen (1975). 1ii)

Z_l, the MVU for g(i) = E(Z_l) is inadmissible under

Lp-2)™h
dominates. Similar conclusions hold when WAF(p,r;A).

any "bowl shaped" loss since S(Z) = min(Z~

Case (i) is of obvious interest. Case (ii1) arises in

estimating the improvement under SEL of the James-
Stein estimator of the multivariate normal mean, sce,
e.g., Efron and Morris (1976).

Two directions will be pursued. 1In the first a .
simple approach for uniformly improving upon MVU esti-
mators is described and illustrated. In the second

POV UOY

Bayesian procedures are characterized and illustrated.
This effort extends earlier work of Perlman and .
Rasmussen (1975), Neff and Strawderman (1976), and 1
DeWaal (1974).
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2. DISTRIBUTION THEORY AND NOTATION

In the NC x2? case, the joint density f(Z,L,))
arises from f(Z|L,x) = £(Z|L) = x2(p+2L), f£(L|x)
= Po()A) (Poisson) and a prior t(A) on A. If
A v y/2 x%(p) (arising from A = uTu/Z with umNp(O,yI)
as discussed in, e.g., Perlman and Rasmussen (1975)),
£(A|L,2) = £(A|L) = p/2 x2(p+2L), where p = y(y+1) 1,
f(y|z) = p/2 x*(p, 02/2), f(L) = NB(p/2, p) (negative
binomial with mean pp(l-p)'l/2), £(Z) = (y+1)x*(p)
and f(L|Z) = Po(pZ/2).

If W= 2/U where Z ~ x2(p3;X) independent of
U~ x2(r), W has a nonnormalized NC F distribution.
The joint density f(W,L,)A) arises from f(W|[L,x)
= £(W[L) = r Y(p+2L)F(p+2L,r), £(L|A) and 7(1) as
above.

The fact that f(Z|L,A) = f£(Z|L), f(W|L,X)
= f(W|L) is useful in improving upon MVU's. The fact
that regardless of t, f(A|{L,Z) = f(x|L), f(A|L,W)
= f(A|L) is useful for finding Bayes estimators. 1In
this vein, if g(A) is to be estimated, let b(L)
= E(g(A)|L), a(L) be such that g(iA) = E(a(L)|A). Then

a(L) helps to find improved estimators, b(L) helps to
find Bayes estimators.

In Sections 3 and 4 the methodology is examined
through a collection of examples. A summary table 1is
glven at the end to unify the findings.

3. FINDING IMPROVED ESTIMATORS

We describe a simple approach which has been suc-
cessful in creating classes of estimators that uni-
formly improve upon the MVU of g(l) under SEL. We then
i1llustrate with several examples. For the NC x? case,
let T(Z) be the MVU of g(Xx). When will T(Z) + ¢(2)

e A A i A
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uniformly improve upon T(Z)? The conditional estima-
tion problem, estimating a(L), provides sufficient con-
ditions while enabling us to work with the simpler
central x? distribution. We note that T is unbiased
for a(L). By direct calculation we can show that the
difference in SEL between T and T+¢ 1is:

-E(I¢(L)lk) - 2 cov(a(L),¢(Z)]|r) (1)

where
I¢(L) = E(¢2|L) + 2E((T-a)¢|L) (2)

and the covariance 1s with respect to the joint distri-
tution of L and Z given A.

Eence if
I¢(L) < 0 VL (3a)
with strict inequality for some L and
cov(a,¢) < 0, (3b)

then T+¢ will dominate T. If a(L) is monotone, restric-
tion of ¢ such that E(¢|L) is nonincreasing in a(L)
will satisfy the covariance condition. If the range

of g(A) is a subinterval of Rl, T+¢ should be similarly

restricted. In particular, if g(A) > 0, the positive
part estimator, [T+¢]+, dominates T+¢.

For the NC F all the above remarks apply with Z
replaced by W.

Examples: NC x?

Two convenient choices of ¢ are ¢é1; = aZB, ¢ézg
bJ
= aeBZ in which case the fact that, n <’1/2, m > -p/2,
m nZ _ I(p/2 + L + m) o™
(2" L) -

I(ps2 + L) (1-2m)®/

will be helpful. We assume p > 5.
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i) If g(x) = A, T(Z) = (Z-p)/2 and b(L) = L. For
o) (3b) will be satisfied if « < 0, 8 > 0 or a > O,
-p/2 < B < 0. For ¢(2) (3b) will be satisfied if a < O,
0 < B <1l/2 or a > 0, B < 0. Clearly, for any a,B

Ccov(L, o1y s 0as A+ 0, 1 =1,2. (4)

If 8 > -p/l, To(1)(L) = 2Ba(r(ps2 + L)7?

e (2 aF(p/2 + L + 2B) + 2BI'(p/2 + L + B)). Hence
-p/4 < B < 0 requires 0 < a < —2 8F(p/2 + L + 8)
+(I'(p/2 + L + .26))"l VL. Since the right-hand side is
smallest at L = 0, we obtain the condition 0 < a <
-EI—BBF(p/2 + B)(T{p/2 + 28))"l in agreement with Neff
and Strawderman (p. 66) and including Perlman and
Rasmussen (p. 464). If o exceeds this condition

)(o) > 0, i.e., with (4), T + ¢(1) can't dominate T.

(1
I? g > 0, we requlre 0> a > -21 BBI‘(p/2 + L + B8)
«(T'(p/2 + L + 28)) ~ VL which is impossible as L + e.
Pasmuss.: .1973) shows that when B = 1 no ¢ of the form
aZ + 6 yields T + ¢ which Jominates T, i.e., no linear

estimator car dominate T.

If 8 <« 1/4, 1 (2)(L) = a(1-4p)~ (P72 *L)
. a+2g(1-28)" (p+2L)n1(L) where ”1(L)

= [(1—“6)/(1—28)]p/2 *L similar to the ¢(1) case, B<0
requires 0 < a < —2;)6(1-28)_l nl(O) to have I (2)
¢

If o excceds this condition, with (4), I

(2
(2) ¢

T + ¢ can't dominate T. If 0 < B < 1/4, no a < O
works if L is sufficiently large.

i1) If g(x) = E(Z—l) (up to a constant g(A) is the
improvement of the James-Stein estimator of the multi-
variate normal mean when the variance is known), T(Z)
=271, w(L) = (p-2+20)71. For ‘1) (3b) nolds if a < 0,
p/2 <B<Oora>0,B8>0. For ¢2), (3b) holds if
a <0, B<Oora>0,0c<B < 1/2.

< 0 VL.

)(0) > 0, i.e.




If 8 > -p/, I (1y(L) = 2Px(r(p/2 +1))7}

-(ZBaF(p/2 +L+28) - 28(p-2+2L)'1F(p/2 +L+B-1)). When
p < 8 with B > -p/4, (i.e., B > =2), 21‘Bs(p-2+2L)'1
«T(p/2 +L+B-1)(T(p/2 +L+23))‘1 + 0 as L + «; no T+¢(l)
which dominate T are revealed. If p > 8, -p/4 < B < -2,
0> a > 22 Bg(p-2)"1r(ps2 +8-1)(r(p/2 +28))° L, T+¢‘L)
will dominate T.

Ir g < 1/4, I¢(2)(L) = a(1-4p)~(P/2 *L)

+(a-48(p-2+2L) Tn (L)), If 8 < =(p-8)"" and 0 > o >
Ue(p—2)_lnl(0) (B < —(p—-ll)-l is needed to insure that

us(p—2+2L)—l nl(L) is largest at L = 0), T+¢(2) will
dominate T. If 0 < B < 1/4, no a > 0 works if L is
sufficiently large.

111) If g(A) = ¢® <=> g(1) = &%, ¢ > -1, T(2)

= (l-—d)p/2edZ/2 where d = c(c+1)—1, a(L) = (c+1)l. if,
in fact, ¢ > 0 we can show that for both ¢(1) and ¢(2)
there exist a,B such that T+¢(1), T+¢(2) dominate T.

We omit the details.,

1v) If g(r) = A2, T(Z) = 2°/4 - (p+2)2/2

+ p(p+2)/4 and a(L) = L(L-1). Since a is monotone on
the support of L, (3b) will be satisfied for ¢'1’ and

(2)
d

over the same ranges as in example (1i).
£ 8 > -p/b, T 9y(L) = 2Ba(r(ps2 + 1))}

. (28ar(p/2 +L+28) + 2B(B+2L-1)T(p/2 +L+B)). It is
apparent that if -p/4 < g8 < 0, a > 0, I (1)(0),
)

I (1)(1) >0; iIf0<Bg <1, a <0, I¢(1)(O) > 0. Here

¢
T+¢(1) can't dominate T. When 8 > 1, no a works if L

is sufficlently large; this approach doesn't reveal any
T + ¢(1) which dominate T.

+(a+28(1-28)"%n (L) (ALZ(1-8) + 2L(p+28) + Bp(p+2))).
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- Again we do not reveal any T + ¢(2) which improve upon T.

' However ¢ = aZ—zeBZ, for example, can be used success-
S fully. We omit the details.
b
E Examples: NC F
b We illustrate for ¢ g = aWB. (The more general

B Br ?
¢ = oW l(1+W) "~ can be used to broaden the conclusions.

We omit the details.) It is useful to note that,
-p/2 < B8 < r/2.

. [(p/2 +L+g) r(r/2 -g)
r(p/2 +L) r(r/2)

E(WB|L)

which increases in L if B > 0, decreases in L if B < 0.

We assume p,r > 5.

v) If g(A) = A, T(W) = ((r-2)W-p)/2 and a(L) =
Condition (3b) will be satisfied if a > 0, -p/2 < B < 0
or a < 0, 0 < B < r/2 and for any a,8 clearly cov(L,4)
> 0 as x » 0.

For -p/l < g < r/l, I¢(L) = ang(L)
-(a+23n3(L)(p+r+2L—2)(r—2B—2)-1) where

- I'(p/2 +L+28) r(r/2 -28)

n, (L)
r(p/2 +L) r(r/2)
(L) = I'(p/2 +L+8) TI(r/2 -g)
3 r(p/2 +L+28) Tr'(r/2 - 2B)

Note that ny(L) = 0(L™®) and tnhat (p+r+?L 2)n3(L)

f increases in L for -p/4 < g < p(p+r-4) . Hence -p/i

i < B<0,0 < o < -23n (0)(p+r-2)(r-2g-2) - or U < B

! < p(pte-1)71, 0 > a > -2Bn (0) (p+r-2)(r-2-2)"1 yields
T+¢ which dominates T. For B < 0, if a exceeds the con-
dition, I¢(0) > 0. The case B = -1 is discussed in
Perlman and Rasmussen (p. 467). At g = 1, n (L)

T : -(p+r'+2L—2)(r'--28—2)“1 = (p+r+2L-2)(p+2L+2) > 1 so that
-2 < a < 0, T+¢ will dominate T. 1In fact, if ¢ = aWty




a more general dominating family of linear estimators
can be created in agreement with Perliman and Rasmussen

(p. 465-6).

vi) For g()) = E(W'l) (up to a constant, g(A) is
the improvement of the James-Stein estimator when an
independent estimator of the variance having r degrees
of freedom is used), T = Wl andg a(L) = r'(p—2+2L)_1
Here o > 0, 0 < B < r/2 or a < 0, -p/2 < B < 0 will
satisfy the covariance condition.

For -p/4 < B8 < r/l, I¢(L) = an2(L)(a bgn (L)nu(L))
where n,(L) = (p+r+2L-2)(p+2L-2)" L (p+or+28-2)" 1 and
n3 (L)~ nb(L) 1ncreases in L if -p/4 < B < -(p(p~2+2r)

(p(p 2)+P(p+2)) . For g8 in this range, if 0 > a
> uBn3(O)nu(0), T+¢ will dominate T. At B = -1,

n3(L)nu(L) > (r+2)_'1 which requires 0 > a > -M(r+2)—l
Hence cw—l will dominate w‘l when (r'—2)(1r'+2)"1 < c < 1.

4. BAYES ESTIMATORS
In developing Bayesian procedures under SEL, we
again turn to the conditional problem, i.e., Z/L.. The
relation

ALe™A
n(L) = | t(A)dAa (5)

L!

shows which 7(L) can arise as priors. 1In fact, since
(5) is an instance of the classical moment problem, if
7(L)L! is a "moment sequence" (see, e.g., Feller (1966)
Sec. VII.3 for conditions) w(L) uniquely determines
1(A). A useful case is, v > - 252 ,

A v G(p/2 +v;y-l) (Gamma with mean (p/2 +v)y), (6)
L ~ NB(p/2 +v; p) (p = y(y+1)71)

Under (6), A|L ~ G(p/2 +v+L; p-l).




i

Recalling that b(L) = E(g(A)|L), for the NC 2
we have by direct calculation E(g(A)]|Z) = E(b(L)]|2Z),
i.e., we can calculate Bayes rules using the central x?

.distribution. The same conclusions hold for the NC F

with W replacing Z.

Examples: NC x?

For a particular wn the Bayes rule

b (L) (2/2) (L) (r(ps2 +1))71

5.(2) = E(b(L)|2) T 23 (7)
2(zZ2/2) " m(L)(T(p/2 +L))
Denote the denominator in (7) by JH(Z).
i) If g(Xx) = A, then from (5) b(L) = (L+1)
em(L+1) (n (L))" L.
Using this, straightforward manipulation yields
" 1
M@ s
5§ (2) =22 T——— 4 p Ml (8)
J (2) J _(Z)
m
Setting 5n(Z) to be the MVU of A in (8) leads to a
second order homogeneous linear differential eguation
whose general solution is
3 (2) = &P % (e e, f27P 2 laz) (9)

cannot equal 0. But then
2/2 ang dif-
ferentiating, we see thatc2 # 0 can't work either.
Thus the MVU can't be the 1limit of Bayes or extended
Bayes clarifying its inadmissibility.

Applying the NB priors in (6) to (8) and denoting

By the definition of JTT ¢,
after multiplying both sides of (9) by e

the resulting rule by 6v p(Z), we have
]

ZJ

6, ,(2) = o5+ v+ ~3% ) . (10)




]
ZJ
It is straightforward to show that for fixed p, v *+ —jﬂ

n
increases in v whence § < § if v, < At

V..
VisP v2’p 1 2
_ - pZ/2 _ .
v = 0, Jn(Z) = ce » 84 o = p(pZ+p)/2 which is dis-
b
cussed at length (particularly when p = 1) in Perlman
and Rasmussen. Corresponding to the noninformative
prior, m(L) = 1 from t(A) = 1 (which arises in (6) at

= - - = =Z—p
N (p=2)/2, p 1), we have 6—(p52),1 >

+ (J_(2)T(p/2 ~1))7! + 2 so that the MVU, T < &, ; Vv.
5

n fact, § b2 = T+¢ with ¢ satisfving (3b), but we
- (59,1
2 s

are unable to show that this 8 dominates T. We note

that Neff and Strawderman derive a sublcass of (8) of
proper Bayes estimators for A arising from a twc-stage
prior distribution and show that none of these dominate
T.

ii) Generally from (5) if g(X) = AP, a positive
integer b(L) = (L+r')r ﬂ(L+P)(ﬂ(L))~1. In particular,
for A2 the Bayes rule becomes

3¢ (z) 3" () 3" (2)
(2)=4z° T 4nz(p+2)T +p(p+2)_T (11)
§ l2)= T D) p Ty PP A AN

Using an argument similar to that below (9), it may be
possible to show that the MVU can't be the limit of
Bayes or extended Bayes. Applying the NB priors in (6)
to (11), we obtain, for example, v = 0, pu zg/u
+ p3 z(p+2)/2 + o p(p+2)/h.

111) If g(1) = e, under (6) with c < p77,

b(L) = (l—pc)-(p/2 +vtl) Bayes rules take the form

5.(2) = (1-pe)” (P72 M) ((1-pe)7M2)/3 (2) . (12)
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At v = 0 we obtain (1—pc)'p/2 ep202/2(1—pc). The inad-
missible MVU estimator wculd arise if p could equal -1.
iv) Ir g(n) = E(z7Y) = E((p-2+2L)"1|1), then
under (6), b(L) = E((p*2+2M)-1|L) where M|L ~ NB

(p/2 +v+L), p(p+1)7™ 1), 1.e.,

r{p/2 +v+L+m)

o [(p/2 +V+L)m3'(p-2+2m)'l(~£_)m(_l_)p/2 +u+L

p+l pt+l

b(L) = &
m=

When v is a nonnegative integer, we have the identity

> r(p/2 +v+L+m). -1, p \p/2 +m-1
E T(p/2 +v+L)m! (p-2+2m) (p+l)
m=0
v+L
+ - 2 +n-1
= 1 (VDy(pozean)Th P72 0N
n=0

(derivable by considering the indefinite inteyral with

p/2 - L+v

respect to p of p 2(p+1) directly and through

its equlivalent negative binomial expansion). This

yields the Bayes rule in the form

(1-0)9/2(931)f£ffi1 . ; r'(p/2) +L+v) (-E_ g)L (13)
J_(2)T(p/2 +v)  L=0 r(p/2 +L)L! P*1 2
v+L
T (V+L)(p_2+2n)*l pn
n=0 1

At v =0, interchanging order of summation in (13), we
obtain the rule as (p+1)—1E((p—2+2L)—1|Z) = (p+1)"l
-g(p22/2(p+1)) since L|Z has a Poisson distribution.

Examples: NC F

For g(A), b(L), under n, the Bayes rule becomes
W(1+W)™1 A NC Beta)

(in terms of V

o (L)VEn (L) T (BEE +ny (r(§ 417 (14)

§ (V)=E(a(L)|V)
m | ZVLn(L)F(E%E +L)(r(§ sL)) "L

10




Denote the denominator in (14) by K"(V).

v) If g(ix) = x it is straightforward to show that
-(Btry ptr _
(5 v 5— -1

- -1 ") P(")
5 (V)=(K_(V))'v ve, Bk vy, )

Under (6), (15) becomes (denoting the rule by Gv p)
b ]

Gv’p(V) = p(p/2 +V+VKn/Kn]' (16)

Note the similarity between (16) and (10). It is
T
straightforward to show that for fixed p, v + VKn/Kn

increases in v whence Gv < 6V

if v, < v, At
1,P 2,P 1 2

v =0, K (V) = (l-p)p/2(r(p/2))—IF(E%Z)(l_OV)—(p+r)/2

so that §, p(V) = p/2((p+r)pV(1-pV)_l+p) which is dis-
3
cussed in Perlman and Rasmussen (p. 4€6), particularly

when p = 1, (60 1 ° ((p+r)wW+p)/2). Corresponding to the
>

noninformative prior, we obtain § p-2 = (r-2)W/c
_(_:*),1
F((p+r)/2) 2

F(p/2 =T)-K_(W(1+W)-T ) whence

- p/2 + (W+1l)+(2 +

T < & Vv, where T is the MVU estimator.

v, 1’
vi) If g(x) = E((p—2+2L)-1|k), under (6) calcula-
tions analogous to those leading to (13) yield at v = 0
the rule (p+1)_1E((p—2+2L)-lIW) as in the NC x? case
except L|W has a negative binomial distribution.

5. SUMMARY AND DIRECTION FOR FUTURE WORK

We present a summary table of the disparate findings
in this article.

Two problems requiring further investigation are
the following. First it would be useful to link the two
estimation approaches discussed herein. More precisely,

writing the Bayes estimators in Section 4 in the form

11
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T+¢, where T is the corresponding MVU, can we use the
method of Section 3 (or some other argument) to obtain
Bayes rules which uniformly improve upon the MVU? Do
any Bayes rules dominate the MVU? Second, under the
priors in (6) at, for example, v = 0 the marginal dis-
tribution of Z is (1—p)-1x2(p) suggesting that for the
NC x? case convenient "empirical Bayes" estimators can
be developed. Do any of these estimators dominate the
corresponding MVU? Can the method of Section 3 help in
trnis regard?

Finally, the meticulous and provocative effort of

the referee is acknowledged. The paper is much improved

as a result.

12
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TABLE 1
Improving
g(A) Estimator of the Bayes Estimator
Form T+¢ under SEL
¢ = aZB General form: (8)
A ¢ = aeb? Under priors in (6):(10)
See Ex. 3(1) See Ex. 4(1)
2 | e az’eP? General form: (11)
See Ex. 3(iv) See Ex. 4(ii)
b _ B . .
c $ = aZ Under priors in (6):(12)
or eCA ¢ = aeBz
See Ex. 3(iii) See Ex. U4(iii)
-1 ¢ = uZB Under priors in (6):(13)
E(Z ) 82
¢ = ae
See Ex. 3(ii) See Ex. 4(iv)
¢ = awB General form: (15)
A Under priors in (6):(16)
See Ex. 3(v) See Ex. U(v)
_ B
See Ex. 3(vi) See Ex. U(vi)
13
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